## CHAPTER 6

## Efficient Diversification

### 6.1 DIVERSIFICATION AND PORTFOLIO RISK

## Diversification and Portfolio Risk

$\square$ Market risk

- Systematic or Nondiversifiable
$\square$ Firm-specific risk
- Diversifiable or nonsystematic


## Figure 6.1 Portfolio Risk as a Function of the Number of Stocks



## Figure 6.2 Portfolio Risk as a Function of Number of Securities



## FIGURE 6.2

Portfolio risk decreases as diversification increases

Source: Meir Statman, "How Many Stocks Make a Diversified Portfolio?" Journal of
Financial and Quantitative
Analysis 22, September 1987.

### 6.2 ASSET ALLOCATION WITH TWO RISKY ASSETS

## Covariance and Correlation

$\square$ Portfolio risk depends on the correlation between the returns of the assets in the portfolio
$\square$ Covariance and the correlation coefficient provide a measure of the returns on two assets to vary

# Two Asset Portfolio Return - Stock and Bond 

$r_{p}=w_{B} r_{B}+w_{S} r_{S}$<br>$r_{P}=$ Portfolio Return<br>$w_{B}=$ Bond Weight<br>$r_{B}=$ Bond Return<br>$w_{S}=$ Stock Weig ht<br>$r_{S}=$ Stock Return

## Covariance and Correlation Coefficient

$\square$ Covariance:

$$
\operatorname{Cov}\left(r_{S}, r_{B}\right)=\sum_{i=1}^{S} p(i)\left[r_{S}(i)-\overline{r_{S}}\right]\left[r_{B}(i)-\overline{r_{B}}\right]
$$

- Correlation

Coefficient:

$$
\rho_{S B}=\frac{\operatorname{Cov}\left(r_{S}, r_{B}\right)}{\sigma_{S} \sigma_{B}}
$$

## Correlation Coefficients:

## Possible Values

Range of values for $\rho_{1,2}$

$$
-1.0 \leq \rho \leq 1.0
$$

If $\rho=1.0$, the securities would be perfectly positively correlated
If $\rho=-1.0$, the securities would be perfectly negatively correlated

## Two Asset Portfolio St Dev Stock and Bond

$$
\begin{aligned}
& \sigma_{p}^{2}=w_{B}^{2} \sigma_{B}^{2}+w_{S}^{2} \sigma_{S}^{2}+2 w_{B} w_{S} \sigma_{S} \sigma_{B} \rho_{B, S} \\
& \sigma_{p}^{2}=\text { Portfolio Variance }
\end{aligned}
$$

$\sqrt{\sigma_{p}^{2}}=$ Portfolio Standard Deviation

# In General, For an n-Security Portfolio: 

## $r_{p}=$ Weighted average of the n securities

$$
\begin{aligned}
\sigma_{p}{ }^{2}= & (C o n s i d e r ~ a l l ~ p a i r-w i s e ~ \\
& \text { covariance measures) }
\end{aligned}
$$

## Three Rules of Two-Risky-Asset Portfolios

- Rate of return on the portfolio:

$$
r_{P}=w_{B} r_{B}+w_{S} r_{S}
$$

- Expected rate of return on the portfolio:

$$
E\left(r_{P}\right)=w_{B} E\left(r_{B}\right)+w_{S} E\left(r_{S}\right)
$$

## Three Rules of Two-Risky-Asset Portfolios

- Variance of the rate of return on the portfolio:

$$
\sigma_{P}^{2}=\left(w_{B} \sigma_{B}\right)^{2}+\left(w_{S} \sigma_{S}\right)^{2}+2\left(w_{B} \sigma_{B}\right)\left(w_{S} \sigma_{S}\right) \rho_{B S}
$$

Numerical Text Example: Bond and Stock Returns (Page 169)

Returns
Bond $=6 \%$ Stock $=10 \%$
Standard Deviation
Bond = 12\% Stock = 25\%
Weights
Bond $=.5$ Stock $=.5$
Correlation Coefficient
(Bonds and Stock) $=0$

Numerical Text Example: Bond and Stock Returns (Page 169)

Return $=8 \%$

$$
.5(6)+.5(10)
$$

Standard Deviation $=13.87 \%$

$$
\begin{gathered}
{\left[(.5)^{2}(12)^{2}+(.5)^{2}(25)^{2}+\ldots\right.} \\
2(.5)(.5)(12)(25)(0)]^{1 / 2} \\
{[192.25]^{1 / 2}=13.87}
\end{gathered}
$$

## Figure 6.3 Investment Opportunity Set for Stocks and Bonds



## Figure 6.4 Investment Opportunity Set for

 Stocks and Bonds with Various Correlations

### 6.3 THE OPTIMAL RISKY PORTFOLIO WITH A RISK-FREE ASSET

## Extending to Include Riskless Asset

- The optimal combination becomes linear
- A single combination of risky and riskless assets will dominate


## Figure 6.5 Opportunity Set Using Stocks

 and Bonds and Two Capital Allocation Lines

# Dominant CAL with a Risk-Free Investment (F) 

CAL(O) dominates other lines -- it has the best risk/return or the largest slope

Slope $=\frac{E\left(r_{A}\right)-r_{f}}{\sigma_{A}}$

# Dominant CAL with a Risk-Free Investment (F) 

$$
\frac{E\left(r_{P}\right)-r_{f}}{\sigma_{P}}>\frac{E\left(r_{A}\right)-r_{f}}{\sigma_{A}}
$$

Regardless of risk preferences, combinations of O \& F dominate

## Figure 6.6 Optimal Capital Allocation Line for Bonds, Stocks and T-Bills



## Figure 6.7 The Complete Portfolio



## Figure 6.8 The Complete Portfolio Solution to the Asset Allocation Problem



### 6.4 EFFICIENT DIVERSIFICATION WITH MANY RISKY ASSETS

## Extending Concepts to All Securities

- The optimal combinations result in lowest level of risk for a given return
- The optimal trade-off is described as the efficient frontier
- These portfolios are dominant


## Figure 6.9 Portfolios Constructed from Three Stocks A, B and C



## Figure 6.10 The Efficient Frontier of Risky Assets and Individual Assets



### 6.5 A SINGLE-FACTOR ASSET MARKET

## Single Factor Model

$$
R_{i}=E\left(R_{i}\right)+\beta_{i} M+e_{i}
$$

$\beta_{i}=$ index of a securities' particular return to the factor
$M$ = unanticipated movement commonly related to security returns
$E_{i}=$ unexpected event relevant only to this security
Assumption: a broad market index like the S\&P500 is the common factor

## Specification of a Single-Index Model of Security Returns

- Use the S\&P 500 as a market proxy
- Excess return can now be stated as:

$$
R_{i}=\alpha+\beta_{i} R_{M}+e
$$

- This specifies the both market and firm risk


## Figure 6.11 Scatter Diagram for Dell



## Figure 6.12 Various Scatter Diagrams



## Components of Risk

- Market or systematic risk: risk related to the macro economic factor or market index
$\square$ Unsystematic or firm specific risk: risk not related to the macro factor or market index
- Total risk = Systematic + Unsystematic


## Measuring Components of Risk

$\sigma_{i}^{2}=\beta_{i}^{2} \sigma_{m}^{2}+\sigma^{2}\left(e_{i}\right)$
where;
$\sigma_{\mathrm{i}}^{2}=$ total variance
$\beta_{\mathrm{i}}{ }^{2} \sigma_{\mathrm{m}}{ }^{2}=$ systematic variance
$\sigma^{2}\left(\mathrm{e}_{\mathrm{i}}\right)=$ unsystematic variance

## Examining Percentage of Variance

Total Risk = Systematic Risk + Unsystematic Risk
Systematic Risk/Total Risk $=\rho^{2}$

$$
\begin{aligned}
& \beta_{i}^{2} \sigma_{m}^{2} / \sigma^{2}=\rho^{2} \\
& \beta_{i}^{2} \sigma_{m}^{2} / \beta_{i}^{2} \sigma_{m}^{2}+\sigma^{2}\left(e_{i}\right)=\rho^{2}
\end{aligned}
$$

## Advantages of the Single Index Model

- Reduces the number of inputs for diversification
- Easier for security analysts to specialize


### 6.6 RISK OF LONG-TERM INVESTMENTS

## Are Stock Returns Less Risky in the Long Run?

- Consider a 2-year investment

$$
\begin{aligned}
& \operatorname{Var}(2 \text {-year total return })=\operatorname{Var}\left(r_{1}+r_{2}\right. \\
& =\operatorname{Var}\left(r_{1}\right)+\operatorname{Var}\left(r_{2}\right)+2 \operatorname{Cov}\left(r_{1}, r_{2}\right) \\
& =\sigma^{2}+\sigma^{2}+0 \\
& =2 \sigma^{2} \text { and standard deviation of the return is } \sigma \sqrt{2}
\end{aligned}
$$

- Variance of the 2-year return is double of that of the one-year return and $\sigma$ is higher by a multiple of the square root of 2


## Are Stock Returns Less Risky in the Long Run?

- Generalizing to an investment horizon of $n$ years and then annualizing:
$\operatorname{Var}\left(n\right.$-year total return) $=n \sigma^{2}$
Standard deviation $(n$-year total return) $=\sigma \sqrt{\mathrm{n}}$
$\sigma($ annualized for an $n$ - year investment $)=\frac{1}{n} \sigma \sqrt{n}=\frac{\sigma}{\sqrt{n}}$


## The Fly in the 'Time Diversification' Ointment

- Annualized standard deviation is only appropriate for short-term portfolios
- Variance grows linearly with the number of years
- Standard deviation grows in proportion to $\sqrt{n}$


## The Fly in the 'Time Diversification' Ointment

- To compare investments in two different time periods:
- Risk of the total (end of horizon) rate of return
- Accounts for magnitudes and probabilities

