ESSENTIALS of Investments BODIE I KANE I MARCUS

CHAPTER 6 Efficient Diversification

6.1 DIVERSIFICATION AND PORTFOLIO RISK

Diversification and Portfolio Risk

Market risk

 Systematic or Nondiversifiable

 Firm-specific risk

 Diversifiable or nonsystematic

Figure 6.1 Portfolio Risk as a Function of the Number of Stocks

Figure 6.2 Portfolio Risk as a Function of Number of Securities

FIGURE 6.2

Portfolio risk decreases as diversification increases

Source: Meir Statman, "How Many Stocks Make a Diversified Portfolio?" Journal of Financial and Quantitative Analysis 22, September 1987.

6.2 ASSET ALLOCATION WITH TWO RISKY ASSETS

Covariance and Correlation

Portfolio risk depends on the correlation between the returns of the assets in the portfolio

Covariance and the correlation coefficient provide a measure of the returns on two assets to vary

Two Asset Portfolio Return – Stock and Bond

 $r_{p} = W_{B}r_{B} + W_{S}r_{S}$ $r_{p} = \text{Portfolio Return}$ $W_{B} = \text{Bond Weight}$ $r_{B} = \text{Bond Return}$ $W_{S} = \text{Stock Weight}$ $r_{S} = \text{Stock Return}$

Covariance and Correlation Coefficient

Covariance:

$$Cov(r_S, r_B) = \sum_{i=1}^{S} p(i) \left[r_S(i) - \overline{r_S} \right] \left[r_B(i) - \overline{r_B} \right]$$

Correlation Coefficient:

 $\frac{Cov(r_S, r_B)}{\sigma_S \sigma_B}$

Correlation Coefficients: Possible Values Range of values for $\rho_{1.2}$ $-1.0 \le \rho \le 1.0$ If $\rho = 1.0$, the securities would be perfectly positively correlated If $\rho = -1.0$, the securities would be perfectly negatively correlated

Two Asset Portfolio St Dev – Stock and Bond

 $\sigma_p^2 = W_B^2 \sigma_B^2 + W_S^2 \sigma_S^2 + 2_{W_B W_S} \sigma_S \sigma_B \rho_{B,S}$ $\sigma_p^2 = \text{Portfolio Variance}$ $\sqrt{\sigma_p^2} = \text{Portfolio Standard Deviation}$

In General, For an n-Security Portfolio:

r_p = Weighted average of the n securities

 $\sigma_p^2 =$ (Consider all pair-wise covariance measures)

Three Rules of Two-Risky-Asset Portfolios

Rate of return on the portfolio:

$$r_P = w_B r_B + w_S r_S$$

Expected rate of return on the portfolio:

 $E(r_P) = w_B E(r_B) + w_S E(r_S)$

Three Rules of Two-Risky-Asset Portfolios

Variance of the rate of return on the portfolio:

 $\sigma_P^2 = (w_B \sigma_B)^2 + (w_S \sigma_S)^2 + 2(w_B \sigma_B)(w_S \sigma_S)\rho_{BS}$

Numerical Text Example: Bond and Stock Returns (Page 169)

Returns Bond = 6% Stock = 10%**Standard Deviation** Bond = 12% Stock = 25%Weights Bond = .5 Stock = .5**Correlation Coefficient** (Bonds and Stock) = 0

Numerical Text Example: Bond and Stock Returns (Page 169)

Return = 8%.5(6) + .5 (10)

Standard Deviation = 13.87%[(.5)² (12)² + (.5)² (25)² + ... 2 (.5) (.5) (12) (25) (0)] ^{1/2} [192.25] ^{1/2} = 13.87

Figure 6.3 Investment Opportunity Set for Stocks and Bonds

Figure 6.4 Investment Opportunity Set for Stocks and Bonds with Various Correlations

6.3 THE OPTIMAL RISKY PORTFOLIO WITH A RISK-FREE ASSET

Extending to Include Riskless Asset

The optimal combination becomes linear
 A single combination of risky and riskless assets will dominate

Figure 6.5 Opportunity Set Using Stocks and Bonds and Two Capital Allocation Lines

Dominant CAL with a Risk-Free Investment (F)

CAL(O) dominates other lines -- it has the best risk/return or the largest slope

Slope =

$$\frac{E(r_A)-r_f}{\sigma_A}$$

Dominant CAL with a Risk-Free Investment (F)

Regardless of risk preferences, combinations of O & F dominate

Figure 6.6 Optimal Capital Allocation Line for Bonds, Stocks and T-Bills

Figure 6.7 The Complete Portfolio

Figure 6.8 The Complete Portfolio – Solution to the Asset Allocation Problem

6.4 EFFICIENT DIVERSIFICATION WITH MANY RISKY ASSETS

Extending Concepts to All Securities

The optimal combinations result in lowest level of risk for a given return

- The optimal trade-off is described as the efficient frontier
- These portfolios are dominant

Figure 6.9 Portfolios Constructed from Three Stocks A, B and C

Figure 6.10 The Efficient Frontier of Risky Assets and Individual Assets

6.5 A SINGLE-FACTOR ASSET MARKET

Single Factor Model

$$R_i = E(R_i) + \beta_i M + e_i$$

- β_i = index of a securities' particular return to the factor
- *M* = unanticipated movement commonly related to security returns
- E_i = unexpected event relevant only to this security
- Assumption: a broad market index like the S&P500 is the common factor

Specification of a Single-Index Model of Security Returns

Use the S&P 500 as a market proxyExcess return can now be stated as:

$$R_i = \alpha + \beta_i R_M + e$$

This specifies the both market and firm risk

Figure 6.11 Scatter Diagram for Dell

Figure 6.12 Various Scatter Diagrams

Components of Risk

Market or systematic risk: risk related to the macro economic factor or market index
 Unsystematic or firm specific risk: risk not related to the macro factor or market index
 Total risk = Systematic + Unsystematic

Measuring Components of Risk

 $\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma^2(e_i)$ where; $\sigma_i^2 = \text{total variance}$ $\beta_i^2 \sigma_m^2 = \text{systematic variance}$ $\sigma^2(e_i) = \text{unsystematic variance}$

Examining Percentage of Variance

Total Risk = Systematic Risk + Unsystematic Risk

Systematic Risk/Total Risk = ρ^2

 $\begin{aligned} \beta_i^2 \sigma_m^2 / \sigma^2 &= \rho^2 \\ \beta_i^2 \sigma_m^2 / \beta_i^2 \sigma_m^2 + \sigma^2(e_i) &= \rho^2 \end{aligned}$

Advantages of the Single Index Model

Reduces the number of inputs for diversification
 Easier for security analysts to specialize

6.6 RISK OF LONG-TERM INVESTMENTS

Are Stock Returns Less Risky in the Long Run?

Consider a 2-year investment

Var (2-year total return) = $Var(r_1 + r_2)$ = $Var(r_1) + Var(r_2) + 2Cov(r_1, r_2)$ = $\sigma^2 + \sigma^2 + 0$

 $=2\sigma^2$ and standard deviation of the return is $\sigma\sqrt{2}$

Variance of the 2-year return is double of that of the one-year return and σ is higher by a multiple of the square root of 2

Are Stock Returns Less Risky in the Long Run?

Generalizing to an investment horizon of n years and then annualizing:

Var(n-year total return) = $n\sigma^2$ Standard deviation (*n*-year total return) = $\sigma\sqrt{n}$ σ (annualized for an *n* - year investment) = $\frac{1}{n}\sigma\sqrt{n} = \frac{\sigma}{\sqrt{n}}$

The Fly in the 'Time Diversification' Ointment

- Annualized standard deviation is only appropriate for short-term portfolios
- Variance grows linearly with the number of years
- Standard deviation grows in proportion to \sqrt{n}

The Fly in the 'Time Diversification' Ointment

- To compare investments in two different time periods:
 - Risk of the total (end of horizon) rate of return
 - Accounts for magnitudes and probabilities